Distinguishing Driver and Passenger Mutations in an Evolutionary History Categorized by Interference
نویسندگان
چکیده
In many biological scenarios, from the development of drug resistance in pathogens to the progression of healthy cells toward cancer, quantifying the selection acting on observed mutations is a central question. One difficulty in answering this question is the complexity of the background upon which mutations can arise, with multiple potential interactions between genetic loci. We here present a method for discerning selection from a population history that accounts for interference between mutations. Given sequences sampled from multiple time points in the history of a population, we infer selection at each locus by maximizing a likelihood function derived from a multilocus evolution model. We apply the method to the question of distinguishing between loci where new mutations are under positive selection (drivers) and loci that emit neutral mutations (passengers) in a Wright-Fisher model of evolution. Relative to an otherwise equivalent method in which the genetic background of mutations was ignored, our method inferred selection coefficients more accurately for both driver mutations evolving under clonal interference and passenger mutations reaching fixation in the population through genetic drift or hitchhiking. In a population history recorded by 750 sets of sequences of 100 individuals taken at intervals of 100 generations, a set of 50 loci were divided into drivers and passengers with a mean accuracy of >0.95 across a range of numbers of driver loci. The potential application of our model, either in full or in part, to a range of biological systems, is discussed.
منابع مشابه
Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing
Distinguishing driver mutations from passenger mutations is critical to the understanding of the molecular mechanisms of carcinogenesis and for identifying prognostic and diagnostic markers as well as therapeutic targets. We reviewed the current approaches and software for identifying driver mutations from passenger mutations including both biology-based approaches and machine-learning-based ap...
متن کاملAn Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer
The traditional view of cancer as a genetic disease that can successfully be treated with drugs targeting mutant onco-proteins has motivated whole-genome sequencing efforts in many human cancer types. However, only a subset of mutations found within the genomic landscape of cancer is likely to provide a fitness advantage to the cell. Distinguishing such "driver" mutations from innocuous "passen...
متن کاملCanDrA: Cancer-Specific Driver Missense Mutation Annotation with Optimized Features
Driver mutations are somatic mutations that provide growth advantage to tumor cells, while passenger mutations are those not functionally related to oncogenesis. Distinguishing drivers from passengers is challenging because drivers occur much less frequently than passengers, they tend to have low prevalence, their functions are multifactorial and not intuitively obvious. Missense mutations are ...
متن کاملPredicting the functional consequences of cancer-associated amino acid substitutions
MOTIVATION The number of missense mutations being identified in cancer genomes has greatly increased as a consequence of technological advances and the reduced cost of whole-genome/whole-exome sequencing methods. However, a high proportion of the amino acid substitutions detected in cancer genomes have little or no effect on tumour progression (passenger mutations). Therefore, accurate automate...
متن کاملEvolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations
Genetic and epigenetic changes in cancer cells are typically divided into 'drivers' and 'passengers'. Drug development strategies target driver mutations, but inter- and intratumoral heterogeneity usually results in emergence of resistance. Here we model intratumoral evolution in the context of a fecundity/survivorship trade-off. Simulations demonstrate that the fitness value of any genetic cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 189 شماره
صفحات -
تاریخ انتشار 2011